Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 581: 216495, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-37993085

RESUMO

Immunity-related GTPase M (IRGM), an Interferon-inducible protein, functions as a pivotal immunoregulator in multiple autoimmune diseases and infection. However, the role of IRGM in hepatocellular carcinoma (HCC) development remains unveiled. Here, we found interferon-γ (IFN-γ) treatment in HCC drastically triggered the expression of IRGM, and the high level of IRGM indicated poor prognosis in HCC patients. Functionally, IRGM promoted the malignant progression of HCC. Single-cell sequencing revealed that IRGM inhibition promoted the infiltration of CD8+ cytotoxic T lymphocytes (CTLs) with significant downregulation of PD-L1 expression in HCC. Furthermore, Immunoprecipitation-Mass Spectrometry assay revealed that IRGM interacted with transcription factor YBX1, which facilitated PD-L1 transcription. Mechanistically, IRGM promoted the interaction of YBX1 and phosphokinase S6K1, increasing phosphorylation and nuclear localization of YBX1, transcription of PD-L1. Additionally, the combination of IRGM inhibition with α-PD1 demonstrated a stronger anti-tumor effect compared to the single application of α-PD1. In summary, IRGM is a novel regulator of PD-L1, which suppresses CD8+ CTLs infiltration and function in HCC, resulting in cancer progression. This study may raise a novel therapeutic strategy combined with immune checkpoint inhibitors (ICIs) against HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antineoplásicos/uso terapêutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Linfócitos T CD8-Positivos , Proteínas de Ligação ao GTP/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Fosforilação , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteínas Quinases S6 Ribossômicas
2.
J Environ Manage ; 351: 119937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159304

RESUMO

Petroleum hydrocarbon (PHC) degrading bacteria have been frequently discovered. However, in practical application, a single species of PHC degrading bacterium with weak competitiveness may face environmental pressure and competitive exclusion due to the interspecific competition between petroleum-degrading bacteria as well as indigenous microbiota in soil, leading to a reduced efficacy or even malfunction. In this study, the diesel degradation ability and environmental robustness of an endophytic strain Pseudomonas aeruginosa WS02, were investigated. The results show that the cell membrane surface of WS02 was highly hydrophobic, and the strain secreted glycolipid surfactants. Genetic analysis results revealed that WS02 contained multiple metabolic systems and PHC degradation-related genes, indicating that this strain theoretically possesses the capability of oxidizing both alkanes and aromatic hydrocarbons. Gene annotation also showed many targets which coded for heavy metal resistant and metal transporter proteins. The gene annotation-based inference was confirmed by the experimental results: GC-MS analysis revealed that short chain PHCs (C10-C14) were completely degraded, and the degradation of PHCs ranging from C15-C22 were above 90% after 14 d in diesel-exposed culture; Heavy metal (Mn2+, Pb2+ and Zn2+) exposure was found to affect the growth of WS02 to some extent, but not its ability to degrade diesel, and the degradation efficiency was still maintained at 39-59%. WS02 also showed a environmental robustness along with PHC-degradation performance in the co-culture system with other bacterial strains as well as in the co-cultured system with the indigenous microbiota in soil fluid extracted from a PHC-contaminated site. It can be concluded that the broad-spectrum diesel degradation efficacy and great environmental robustness give P. aeruginosa WS02 great potential for application in the remediation of PHC-contaminated soil.


Assuntos
Metais Pesados , Petróleo , Poluentes do Solo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Biodegradação Ambiental , Poluentes do Solo/análise , Petróleo/análise , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Solo/química , Metais Pesados/análise , Microbiologia do Solo
3.
Clin Transl Med ; 13(10): e1451, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877357

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play a significant role in the initiation and progression of various cancers, including hepatocellular carcinoma (HCC). Circular syntaxin 6 (circSTX6, also known as hsa_circ_0007905) has been identified as a microRNA (miRNA) sponge in pancreatic adenocarcinoma. However, its full range of functions in terms of protein scaffold and translation remain largely unexplored in the context of HCC. METHODS: The expression of circSTX6 and its encoded protein was examined in HCC tumour tissues. N6 -methyladenosine (m6 A) on circSTX6 was verified and quantified by methylated RNA immunoprecipitation (Me-RIP), RIP and dual luciferase reporter assays. The biological functions of circSTX6 and its encoded protein in HCC were clarified by in vitro and in vivo experiments. Mechanistically, the interaction between circSTX6 and heterogeneous nuclear ribonucleoprotein D (HNRNPD) was investigated by RNA pull-down, RIP and fluorescence in situ hybridization (FISH)/IF. The regulatory effects of circSTX6 and HNRNPD on activating transcription factor 3 (ATF3) mRNA were determined by mRNA stability and RIP assays. Furthermore, the presence of circSTX6-encoded protein was verified by mass spectrometry. RESULTS: CircSTX6 and its encoded 144 amino acid polypeptide, circSTX6-144aa, were highly expressed in HCC tumour tissues and served as independent risk factors for overall survival in HCC patients. The expression of circSTX6 was regulated by METTL14 in an m6 A-dependent manner. Functionally, circSTX6 accelerated HCC proliferation and tumourigenicity and reinforced tumour metastasis in vitro and in vivo. Mechanistically, circSTX6 acted as a sponge for HNRNPD protein, facilitating its binding to ATF3 mRNA, consequently promoting ATF3 mRNA decay. Meanwhile, circSTX6-144aa promoted HCC proliferation, migration and invasion independent of circSTX6 itself. CONCLUSION: Collectively, our study reveals that m6 A-modified circSTX6 drives malignancy in HCC through the HNRNPD/ATF3 axis, while its encoded circSTX6-144aa contributes to HCC progression independent of circSTX6. CirSTX6 and its encoded protein hold promise as potential biomarkers and therapeutic targets in HCC.


Assuntos
Fator 3 Ativador da Transcrição , Carcinoma Hepatocelular , Ribonucleoproteínas Nucleares Heterogêneas Grupo D , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Humanos , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Aminoácidos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , RNA Mensageiro , RNA Circular/genética
4.
Signal Transduct Target Ther ; 8(1): 345, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37699892

RESUMO

Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Aminoácidos , Ciclo Celular , Diferenciação Celular , Proliferação de Células
5.
Sci Immunol ; 8(86): eadg0878, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37624910

RESUMO

During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.


Assuntos
Antígenos CD28 , Fator 1 de Transcrição de Linfócitos T , Fator 1 de Transcrição de Linfócitos T/genética , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Diferenciação Celular , Fatores de Transcrição
6.
Int J Biol Sci ; 19(11): 3412-3427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497004

RESUMO

The progression of hepatocellular carcinoma (HCC) remains a huge clinical challenge, and elucidation of the underlying molecular mechanisms is critical to develop effective therapeutic strategy. Dumbbell former 4 (DBF4) complexes with cell division cycle 7 (CDC7) to form DBF4-dependent kinase (DDK), playing instrumental roles in tumor cell survival, whereas its roles in HCC remain elusive. This study revealed that DBF4 expression was upregulated in HCC and constituted an independent prognostic factor of patient survival. We identified p65 as an upstream inducer which increased DBF4 expression by directly binding to its promoter. DBF4 accelerated HCC cell proliferation and tumorigenesis in vitro and in vivo. Mechanistically, DBF4 complexed with CDC7 to bind to the coiled coil domain of STAT3 and activate STAT3 signaling through XPO1-mediated nuclear exportation. Notably, p65 enhanced the nuclear transport of DDK and DDK-STAT3 interaction by transcriptionally upregulating XPO1. DBF4 expression positively correlated with activated STAT3 and XPO1 in HCC tissues. Furthermore, combining DDK inhibitor XL413 with anti-PD-1 immunotherapy dramatically suppressed HCC growth and prolonged the survival of HCC-bearing mouse. Our findings reveal that DDK activates STAT3 pathway and facilitates HCC progression, and demonstrate the proof of the concept of targeting DDK to improve the efficacy of HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Morte Celular
7.
J Transl Med ; 21(1): 420, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37381011

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal tumor types worldwide. Glycosylation has shown promise in the study of tumor mechanisms and treatment. The glycosylation status of HCC and the underlying molecular mechanisms are still not fully elucidated. Using bioinformatic analysis we obtained a more comprehensive characterization of glycosylation of HCC. Our analysis presented that high glycosylation levels might correlate with tumor progression and poor prognosis. Subsequent Experiments identified key molecular mechanisms for ST6GALNAC4 promoting malignant progression by inducing abnormal glycosylation. We confirmed the contribution of ST6GALNAC4 to proliferation, migration, and invasion in vitro and in vivo. Mechanistic studies revealed that ST6GALNAC4 may be induced abnormal TGFBR2 glycosylation, resulting in the higher protein levels of TGFBR2 and TGF[Formula: see text] pathway increased activation. Our study also provided a further understand of immunosuppressive function of ST6GALNAC4 through T antigen-galectin3+ TAMs axis. This study has provided one such possibility that galectin3 inhibitors might be an acceptable treatment choice for HCC patients with high T antigen expression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sialiltransferases , Humanos , Antígenos Virais de Tumores , Carcinogênese , Carcinoma Hepatocelular/genética , Glicosilação , Neoplasias Hepáticas/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Sialiltransferases/genética
8.
Epigenetics ; 18(1): 2204772, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37092305

RESUMO

Background: Circular RNA (circRNA) plays a critical role in tumour progression. Circ-CCT3, a particularly abundant circRNA, was proposed to be involved in tumorigenesis. However, the role of circ-CCT3 in hepatocellular carcinoma remains elusive.Methods: Here, circ-CCT3 (a circRNA derived from exons 3, 4 and 5 of the CCT3 gene, hsa_circ_0004680) was identified by circRNA microarray and validated by qRT-PCR. RNA immunoprecipitation (RIP) was performed to confirm the binding between ALKBH5 along with METTL3 and circ-CCT3. Methylated RNA Immunoprecipitation (MeRIP) was used to detect the N6-methyladenosine (m 2A) levels of circ-CCT3. CircRNAs in vivo precipitation, luciferase reporter assay, biotin-coupled microRNA capture, and fluorescence in situ hybridization were conducted to assess the interaction between circ-CCT3 and miR-378a-3p. The functions of circ-CCT3 in HCC were evaluated both in vitro and in vivo.Results: We demonstrated that circ-CCT3 was highly expressed in HCC which indicated the poor prognosis. Circ-CCT3 expression served as an independent risk factor for overall survival in patients with HCC. Knocking-down of circ-CCT3 inhibited the proliferation, invasion and migration of HCC cells, and angiogenesis of HUVEC. Mechanistically, ALKBH5 and METTL3 could bind and regulate m A-modification of circ-CCT3. Further, circ-CCT3 upregulated the expression of FLT-1 by sponging miR-378a-3p.Conclusions: Circ-CCT3 was significantly up-regulated in HCC and promoted liver cancer development via miR-378a-3p-FLT1 axis. It was also found that circ-CCT3 was under m A-modification mediated by ALKBH5 and METTL3. Our study highlights circ-CCT3 as a potential therapeutic target of HCC treatment, which provides a novel understanding on mechanisms of circRNAs in HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética
9.
Adv Sci (Weinh) ; 10(15): e2206669, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36994647

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignancies with poor prognosis, and novel treatment strategies are urgently needed. Mitochondria are key regulators of cellular homeostasis and potential targets for tumor therapy. Here, the role of mitochondrial translocator protein (TSPO) in the regulation of ferroptosis and antitumor immunity is investigated and the potential therapeutic implications for HCC are assessed. TSPO is highly expressed in HCC and associated with poor prognosis. Gain- and loss-of-function experiments present that TSPO promotes HCC cell growth, migration, and invasion in vitro and in vivo. In addition, TSPO inhibits ferroptosis in HCC cells via enhancing the Nrf2-dependent antioxidant defense system. Mechanistically, TSPO directly interacts with P62 and interferes with autophagy, leading to the accumulation of P62. The P62 accumulation competes with KEAP1, preventing it from targeting Nrf2 for proteasomal degradation. Furthermore, TSPO promotes HCC immune escape by upregulating PD-L1 expression through Nrf2-mediated transcription. Notably, TSPO inhibitor PK11195 combines with anti-PD-1 antibody showing a synergistic anti-tumor effect in a mouse model. Overall, the results demonstrated that mitochondrial TSPO promotes HCC progression by inhibiting ferroptosis and antitumor immunity. Targeting TSPO can be a promising new strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte , Evasão da Resposta Imune , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
10.
J Allergy Clin Immunol ; 151(5): 1259-1268, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736798

RESUMO

BACKGROUND: Timely medical intervention in severe cases of coronavirus disease 2019 (COVID-19) and better understanding of the disease's pathogenesis are essential for reducing mortality, but early classification of severe cases and its progression is challenging. OBJECTIVE: We investigated the levels of circulating phospholipid metabolites and their relationship with COVID-19 severity, as well as the potential role of phospholipids in disease progression. METHODS: We performed nontargeted lipidomic analysis of plasma samples (n = 150) collected from COVID-19 patients (n = 46) with 3 levels of disease severity, healthy individuals, and subjects with metabolic disease. RESULTS: Phospholipid metabolism was significantly altered in COVID-19 patients. Results of a panel of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) and of phosphatidylethanolamine and lysophosphatidylethanolamine (LPE) ratios were significantly correlated with COVID-19 severity, in which 16 phospholipid ratios were shown to distinguish between patients with severe disease, mild disease, and healthy controls, 9 of which were at variance with those in subjects with metabolic disease. In particular, relatively lower ratios of circulating (PC16:1/22:6)/LPC 16:1 and (PE18:1/22:6)/LPE 18:1 were the most indicative of severe COVID-19. The elevation of levels of LPC 16:1 and LPE 18:1 contributed to the changes of related lipid ratios. An exploratory functional study of LPC 16:1 and LPE 18:1 demonstrated their ability in causing membrane perturbation, increased intracellular calcium, cytokines, and apoptosis in cellular models. CONCLUSION: Significant Lands cycle remodeling is present in patients with severe COVID-19, suggesting a potential utility of selective phospholipids with functional consequences in evaluating COVID-19's severity and pathogenesis.


Assuntos
COVID-19 , Fosfolipídeos , Humanos , Fosfolipídeos/metabolismo , Lisofosfatidilcolinas/metabolismo
11.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163859

RESUMO

Ambrosia artemisiifolia (Amb a) contains many allergens. Allergic conjunctivitis caused by Ambrosia artemisiifolia and its related allergen-specific immunotherapy (AIT) are seldom studied at present. poly(DL-lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) is a very good nano-carrier, which has been applied in the medical field. In this context, we studied the immunotherapy effect and potential mechanism of recombinant Amb a 1 (rAmb a 1)-loaded PLGA-PEG nanoparticles. A mouse allergic conjunctivitis model was established with Ambrosia artemisiifolia crude extract, and the nanoparticles were used for AIT through direct observation of conjunctival tissue, degranulation of mast cells in conjunctival tissue, serum-specific antibodies, cytokines and other assessment models. The treatment of nanoparticles enhanced the secretion of T-helper 1 (Th1) cytokine Interferon-gama (IFN-γ) and the production of immunoglobulin G (IgG)2a (IgG2a), inhibited the secretion of T-helper 2 (Th2) cytokine Interleukin (IL)-13 and IL-4 and the level of IgE. Especially, degranulation of mast cells and expression of mast cell protease-1 (MCP-1) in conjunctival tissue was reduced significantly. In this study, we proved that the nanoparticles prepared by rAmb a 1 and PLGA-PEG have an immunotherapy effect on allergic conjunctivitis in mice.


Assuntos
Antígenos de Plantas/administração & dosagem , Conjuntivite Alérgica/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas/administração & dosagem , Proteínas de Plantas/administração & dosagem , Poliésteres/química , Polietilenoglicóis/química , Células Th1/imunologia , Alérgenos/efeitos adversos , Ambrosia/química , Animais , Antígenos de Plantas/química , Conjuntivite Alérgica/etiologia , Conjuntivite Alérgica/patologia , Citocinas/metabolismo , Imunoglobulina E/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Proteínas de Plantas/química , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química
12.
Front Immunol ; 13: 1099509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776398

RESUMO

Background: Metal components of environmental PM2.5 are associated with the exacerbation of allergic diseases like asthma. In our recent hospital-based population study, exposure to vanadium is shown to pose a significant risk for current asthma, but the causal relationship and its underlying molecular mechanisms remain unclear. Objective: We sought to determine whether vanadium co-exposure can aggravate house dust mite (HDM)-induced allergic airway inflammation and remodeling, as well as investigate its related mechanisms. Methods: Asthma mouse model was generated by using either vanadium pentoxide (V2O5) or HDM alone or in combination, in which the airway inflammation and remodeling was investigated. The effect of V2O5 co-exposure on HDM-induced epithelial-derived cytokine release and oxidative stress (ROS) generation was also examined by in vitro analyses. The role of ROS in V2O5 co-exposure-induced cytokine release and airway inflammation and remodeling was examined by using inhibitors or antioxidant. Results: Compared to HDM alone, V2O5 co-exposure exacerbated HDM-induced airway inflammation with increased infiltration of inflammatory cells and elevated levels of Th1/Th2/Th17 and epithelial-derived (IL-25, TSLP) cytokines in the bronchoalveolar lavage fluids (BALFs). Intriguingly, V2O5 co-exposure also potentiated HDM-induced airway remodeling. Increased cytokine release was further supported by in vitro analysis in human bronchial epithelial cells (HBECs). Mechanistically, ROS, particularly mitochondrial-derived ROS, was significantly enhanced in HBECs after V2O5 co-exposure as compared to HDM challenge alone. Inhibition of ROS with its inhibitor N-acetyl-L-cysteine (NAC) and mitochondrial-targeted antioxidant MitoTEMPO blocked the increased epithelial release caused by V2O5 co-exposure. Furthermore, vitamin D3 as an antioxidant was found to inhibit V2O5 co-exposure-induced increased airway epithelial cytokine release and airway remodeling. Conclusions: Our findings suggest that vanadium co-exposure exacerbates epithelial ROS generation that contribute to increased allergic airway inflammation and remodeling.


Assuntos
Asma , Vanádio , Animais , Camundongos , Humanos , Vanádio/toxicidade , Espécies Reativas de Oxigênio , Remodelação das Vias Aéreas , Antioxidantes/farmacologia , Asma/etiologia , Citocinas/metabolismo , Inflamação/complicações , Pyroglyphidae , Dermatophagoides pteronyssinus , Estresse Oxidativo
13.
Front Microbiol ; 12: 649091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276585

RESUMO

Nanosecond pulsed electric field (nsPEF) is a novel ablation technique that is based on high-intensity electric voltage to achieve tumour-killing effect in the target region, and increasingly considered for treating tumours of the liver, kidneys and other organs with rich blood supply. This study aims to observe effect of nsPFE treatment on serum metabolites and gut microbiota. The serum and faecal specimens of the pigs were collected pre- and post-treatment. The gut microbiota of pigs was sequenced by Illumina Miseq platform for analysing the diversity and alterations of gut microbiota. Liquid chromatography-mass spectrometry (LC-MS)-based metabonomic analysis and Pearson coefficient method were also used to construct the interaction system of different metabolites, metabolic pathways and flora. A total of 1,477 differential metabolites from the serum were identified by four cross-comparisons of different post-operative groups with the control group. In addition, an average of 636 OTUs per sample was detected. Correlation analysis also revealed the strong correlation between intestinal bacteria and differential metabolites. The nsPEF ablation of the liver results in a degree of liver damage that affects various metabolic pathways, mainly lipid metabolism, as well as gut microbiota. In conclusion, our study provided a good point for the safety and feasibility of applying nsPEF on liver through the integrated analysis of metabolomics and microbiomes, which is beneficial for the improvement of nsPEF in clinical use.

14.
Front Cell Dev Biol ; 9: 631486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235141

RESUMO

Liquid-liquid Phase Separation (LLPS) of proteins and nucleic acids has emerged as a new paradigm in the study of cellular activities. It drives the formation of liquid-like condensates containing biomolecules in the absence of membrane structures in living cells. In addition, typical membrane-less condensates such as nuclear speckles, stress granules and cell signaling clusters play important roles in various cellular activities, including regulation of transcription, cellular stress response and signal transduction. Previous studies highlighted the biophysical and biochemical principles underlying the formation of these liquid condensates. The studies also showed how these principles determine the molecular properties, LLPS behavior, and composition of liquid condensates. While the basic rules driving LLPS are continuously being uncovered, their function in cellular activities is still unclear, especially within a pathological context. Therefore, the present review summarizes the recent progress made on the existing roles of LLPS in cancer, including cancer-related signaling pathways, transcription regulation and maintenance of genome stability. Additionally, the review briefly introduces the basic rules of LLPS, and cellular signaling that potentially plays a role in cancer, including pathways relevant to immune responses and autophagy.

16.
World J Surg Oncol ; 18(1): 259, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004051

RESUMO

BACKGROUND: Splenic marginal zone lymphoma (SMZL) is a rare non-Hodgkin lymphoma, and much little is known about its clinical characteristics and management strategies. Here we present a case of SMZL and review relevant literature to provide a better recognition of this disease entity. CASE PRESENTATION: A 49-year-old Chinese female was admitted to our hospital with complaints of abdominal distension and acid reflux. Physical examinations and imaging investigations suggested the presence of splenomegaly. Laboratory workups revealed mildly reduced white blood cell count otherwise was not remarkable. The patient underwent splenectomy. Histological examination combined with immunohistochemical analysis of the resected spleen confirmed the diagnosis of SMZL. The patient recovered uneventfully during follow-ups. CONCLUSIONS: Due to the rarity and unspecific clinical features, SMZL is extremely challenging to be diagnosed preoperatively. Patients with SMZL are generally associated with favorable prognosis. Combining the staging characteristics of non-Hodgkin's lymphoma and splenic primary lymphoma may assist in clinical staging management of SMZL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma de Zona Marginal Tipo Células B , Neoplasias Esplênicas , Feminino , Humanos , Linfoma de Zona Marginal Tipo Células B/diagnóstico por imagem , Linfoma de Zona Marginal Tipo Células B/cirurgia , Pessoa de Meia-Idade , Prognóstico , Esplenectomia , Neoplasias Esplênicas/cirurgia
17.
Cancer Lett ; 495: 1-11, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-32949680

RESUMO

As a promising method for local tumor treatment, nanosecond pulsed electric field (nsPEF) ablation elicits a potent anti-tumor immune response. However, the mechanism of the nsPEF-mediated anti-tumor immune response and its effects on the tumor microenvironment remains unclear. Here, we demonstrated that nsPEF treatment increased the level of membrane PD-L1 in liver cancer cells. Furthermore, nsPEF induced the release of PD-L1-associated extra-cellular vesicles, leading to the dysfunction of CD8+ T cells, which could potentially be reversed by PD-L1 blockade. Biological and functional assays also demonstrated that nsPEF treatment resulted in the increased PD-L1 level and dysfunction of infiltrated CD8+ T cells in tumor tissues in vivo, indicating the long term antitumor efficacy of nsPEF treatment. A combination of nsPEF treatment and PD-L1 blockade effectively inhibited tumor growth and improved the survival of the tumor-bearing mouse. In conclusion, nsPEF treatment induced the translocation and release of PD-L1 and contributed to the dysfunction of infiltrated CD8+ T cells, resulting in tumor progression at later stages. The combination of nsPEF treatment and PD-L1 blockade is a promising therapeutic strategy for liver cancer.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias Hepáticas/terapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Terapia por Estimulação Elétrica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/metabolismo , Camundongos , Transporte Proteico , Resultado do Tratamento , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Oncol ; 10: 1105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733807

RESUMO

N6-Methyladenosine (m6A) is the most common RNA internal modification in eukaryotic cells. Its regulatory effects at the post-transcriptional level on both messenger RNAs (mRNAs) and noncoding RNAs have been widely studied; these include alternative splicing, stability, translation efficiency, nucleus export, and degradation. m6A modification is implicated in a series of physiological and pathological activities, such as embryonic stem cell differentiation, immunoregulation, adipogenesis, and cancer development. Recently, the significance of m6A methylation has been identified in both viral hepatitis and non-alcohol fatty liver disease (NAFLD), which are major risk factors in the development of hepatocellular carcinoma (HCC). Given the high incidence and mortality rate of HCC worldwide, it is of great importance to elucidate the mechanisms underlying HCC initiation and progression. m6A as an emerging research focus has great potential to facilitate the understanding of HCC, particularly from an etiological perspective. Thus, in this review, we summarize recent progress in understanding m6A modification related to viral hepatitis, NAFLD, and HCC, including their mechanisms and clinical applications.

19.
Front Genet ; 11: 663, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695142

RESUMO

The tumor microenvironment (TME) has attracted attention owing to its essential role in tumor initiation, progression, and metastasis. With the emergence of immunotherapies for various cancers, and their high efficacy, an understanding of the TME in gastric cancer (GC) is critical. The aim of this study was to investigate the effect of various components within the GC TME, and to identify mechanisms that exhibit potential as therapeutic targets. The ESTIMATE algorithm was used to quantify immune and stromal components in GC samples, whose clinicopathological significance and relationship with predicted outcomes were explored. Low tumor mutational burden and high M2 macrophage infiltration, which are considered immune suppressive characteristics and may be responsible for unfavorable prognoses in GC, were observed in the high stromal group (HR = 1.585; 95% CI, 1.112-2.259; P = 0.009). Furthermore, weighted correlation network, differential expression, and univariate Cox analyses were used, along with machine learning methods (LASSO and SVM-RFE), to reveal genome-wide immune phenotypic correlations. Eight stromal-relevant genes cluster (FSTL1, RAB31, FBN1, ANTXR1, LRRC32, CTSK, COL5A2, and ENG) were identified as adverse prognostic factors in GC. Finally, using a combination of TIMER database and single-sample gene set enrichment analyses, we found that the identified genes potentially contribute to macrophage recruitment and polarization of tumor-associated macrophages. These findings provide a different perspective into the immune microenvironment and indicate potential prognostic and therapeutic targets for GC immunotherapies.

20.
Med Sci Monit ; 26: e925733, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32706768

RESUMO

BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive gastrointestinal tumors and has an extremely high mortality rate. Recent studies indicate that alternative splicing (AS), a common post-transcriptional process, has important roles in tumor biological behaviors and may provide novel immunotherapeutic targets. This study systematically analyzes AS profiles in PDAC and reveals their potential regulatory effects on cancer immune response. MATERIAL AND METHODS AS event, RNA sequencing, and splicing factor (SF) data were extracted from SpliceSeq, The Cancer Genome Atlas, and SpliceAid2, respectively. Overall survival (OS)-associated AS events and SFs were identified with univariate analysis. The LASSO method and multivariate Cox regression analysis were used to construct predictive signatures for the prediction of patient prognosis. The proportions of immune cells within PDAC samples were evaluated using the CIBERSORT algorithm. The correlations among AS events, SFs, and immune cell proportions were calculated using Spearman correlation analysis. Consensus clustering and immune classification were performed on the PDAC cohort. RESULTS A total of 4812 OS-related AS events from 3341 parent genes were identified, and 8 AS-based predictive models were constructed for PDAC. An OS-related SF-AS regulatory network was constructed. The AS events regulated by ELAVL4 exhibited strong correlations with CD8 T cells and regulatory T cells. In addition, AS-based clusters demonstrated distinct OS outcomes and immune features. CONCLUSIONS AS-based predictive models with high accuracy were constructed to facilitate prognosis prediction and treatment of PDAC. An SF-AS regulatory network was constructed, revealing the potential relationships among SF, AS, and immune response.


Assuntos
Processamento Alternativo/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Estudos de Coortes , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Imunidade/genética , Imunidade/imunologia , Prognóstico , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...